
Postgres OnLine Journal: January 2009

An in-depth Exploration of the PostgreSQL Open Source Database

Table Of Contents

PostgreSQL Q & A

How to determine what elements are in your enum Beginner
How to require all checked conditions are met by a result Intermediate
Basics

SQL Coding Standards To Each His Own
SQL Coding Standards To Each His Own Part II
PL Programming

Quick Intro to PLPython Intermediate
Application Development

Fusion Charts and PostgreSQL Part 2: ASP.NET Dashboard Intermediate
Fusion Charts and PostgreSQL Part 3: PHP Dashboard Intermediate
Product Showcase

On the topic of Cheat Sheets: DZone RefCardz
Special Feature

PostgreSQL 8.3 PSQL Cheatsheet Overview
Reader Comments

A Product of Paragon Corporation
http://www.paragoncorporation.com/
http://www.postgresonline.com/

Postgres OnLine Journal January 2009 1 of 28

http://www.paragoncorporation.com/
http://www.paragoncorporation.com/
http://www.postgresonline.com/

PostgreSQL Q & A

How to determine what elements are in your enum Beginner

This question was asked on the PostgreSQL novice newsgroup recently and Tom Lane fielded the question. Its a common
thing to want to know if you are using the new 8.3 Enum feature. So we felt it useful to restate it.

Question: Given an enum, is there a query you can run to list out all the elements allowed by the enum?

Answer: Yes.

Below is just a regurgitation of the news item http://archives.postgresql.org/pgsql-novice/2008-12/msg00043.php

CREATE TYPE myenum as enum ('red','green','blue');
SELECT enumlabel
 FROM pg_enum
 WHERE enumtypid = 'myenum'::regtype
 ORDER BY oid;

 enumlabel

 red
 green
 blue
(3 rows)

http://www.postgresql.org/docs/8.3/static/catalog-pg-enum.html

Back to Table Of Contents

Postgres OnLine Journal January 2009 2 of 28

http://archives.postgresql.org/pgsql-novice/2008-12/msg00043.php
http://www.postgresql.org/docs/8.3/static/catalog-pg-enum.html

PostgreSQL Q & A

How to require all checked conditions are met by a result Intermediate

Problem You are developing a consultant search application where by a user looking for a consultant can check all the
items in the list they require a consultant to have. You have 2 tables. consultant and consultant_qual. The
consultant_qual has primary key formed by 2 fields consultant_id and qual_id. qual_id contains a constrained list with
things like 'OpenLayers', 'PostGIS', 'Python', 'C#' etc.

How do you devise a query that given a list of checked options by the user, only returns consultants with not 1 but all of
those qualifications?

Solutions

When looking at a problem like this, I am always amazed at the number of ways you can solve this in SQL. Some very
convoluted and slow, some very convoluted looking and fast, and some pretty fast and pretty simple. How can that be
when SQL is a declarative language? It all boils down to what angle you look at the problem or rather how you restate the
problem and also the fact that like in other languages there are a myriad of ways to say the same thing and some
databases and dataset patterns do better with one than another.

To demonstrate:

1. The divide and conquer approach: Treat this as an n step repeating problem and only solutions that are solutions to
each step will be the solutions to the final problem.

2. The lets just do this in one gulp approach: The number of checked options by the user must equal the number of
qualifications that a consultant satisfies that are in the list of checked options by the user.

Divide and Conquer Solutions

-- This will work in databases that support ANSI INTERSECT (e.g. PostgreSQL and SQL Server 2005/2008)
--but not in MySQL, SQL Server 2000 for example
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 INNER JOIN consultant_qual AS Q ON C.consultant_id = Q.consultant_id
 WHERE Q.qual_id = 'OpenLayers'
INTERSECT
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 INNER JOIN consultant_qual AS Q ON C.consultant_id = Q.consultant_id
 WHERE Q.qual_id = 'PostGIS';

--This will work in any database that supports EXISTS (which is a lot)
-- and uses several correlated subqueries (that is just variant -- I can count at least one more)
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 WHERE EXISTS(SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'OpenLayers' AND C.consultant_id = Q.consultant_id)
 AND EXISTS(SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'PostGIS' AND C.consultant_id = Q.consultant_id);

--This will work in any database that supports IN (which is even more than EXISTS)
-- and uses several non-correlated subqueries

Postgres OnLine Journal January 2009 3 of 28

SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 WHERE C.consultant_id IN(SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'OpenLayers')
 AND C.consultant_id IN (SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'PostGIS');

-- This will work in any database that supports subselects in JOINS
-- which is a lot
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 INNER JOIN
 (SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'OpenLayers') AS Q1
 ON C.consultant_id = Q1.consultant_id
 INNER JOIN
 (SELECT Q.consultant_id
 FROM consultant_qual As Q
 WHERE Q.qual_id = 'PostGIS') AS Q2
 ON C.consultant_id = Q2.consultant_id ;

One Gulp solutions

The nice thing about the gulp solutions is that regardless of what the user checks, your query is more or less the same and
always has the same number of sub queries. There are lots of permutations we can think of here too, but these are just 3
to demonstrate.

-- This will work in pretty much any relational database I can think of
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C INNER JOIN consultant_qual As Q
 ON C.consultant_id = Q.consultant_id
 WHERE Q.qual_id IN('OpenLayers', 'PostGIS')
 GROUP BY C.consultant_id, C.consultant_name
 HAVING COUNT(Q.qual_id) = 2;

-- This will work in pretty much any relational database I can think of
-- If it supports subselects in WHERE it will work
SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 WHERE 2 = (SELECT COUNT(Q.qual_id)
 FROM consultant_qual As Q
 WHERE Q.consultant_id = C.consultant_id
 AND Q.consultant_qual IN('OpenLayers', 'PostGIS')) ;

--This on first glance looks redundant,
-- but takes advantage of the fact that the first condition is easy for most relational dbs to optimize
-- and the second will never be run if the first check fails

SELECT C.consultant_id, C.consultant_name
 FROM consultant AS C
 WHERE EXISTS(SELECT Q.qual_id FROM consultant_qual As Q
 WHERE Q.consultant_qual IN('OpenLayers', 'PostGIS')
 AND Q.consultant_id = C.consultant_id) AND
 (2 = (SELECT COUNT(Q.qual_id)
 FROM consultant_qual As Q
 WHERE Q.consultant_id = C.consultant_id
 AND Q.qual_id IN('OpenLayers', 'PostGIS'))) ;

Postgres OnLine Journal January 2009 4 of 28

Back to Table Of Contents

Postgres OnLine Journal January 2009 5 of 28

Basics

SQL Coding Standards To Each His Own

I was reading Josh Berkus last blog post and was intrigued by his last post Writing Maintainable Queries Part I.

He is right that lots has been said about coding standards in other languages and even right out holy wars have been
launched on the subject, but as far as SQL goes, not quite enough has been said on the subject for us to have a great war
to end all wars.

I was also happy to see that we agreed with all his points except his first one. Yes I felt dissed, and thought hmm if
someone as important as Josh thinks our aliases should be very descriptive and we should use the table name rather than
the alias where possible, surely there must be something wrong with me for not believing in this fundamental philosophy.

In the rest of this excerpt I shall make fun of Josh and also set forth some of our own SQL Coding guidelines. Hopefully
Josh won't take too much offense at this small jibe.

Getting back to Josh. Imagine a world filled with Josh Berkus wannabies taking his advice to its logical conclusion and what
you get is this.

SELECT foot_from_left.foot AS the_foot_I_stuck_in_mouth, foot_from_right.foot AS
the_foot_from_the_right, mouth AS the_mouth_I_stuck_my_left_foot_in FROM foot AS foot_from_left
INNER JOIN foot AS foot_from_right ON foot_from_right.person = foot_from_left.person INNER JOIN
mouth ON (mouth.person = foot_from_right.person) WHERE mouth.location = foot_from_left.location
AND foot_from_left.foot_position ='L' AND foot_from_right.foot_position = 'R'

I found a great cartoon depicting this somewhere, but don't seem to find this at the moment.

Yes we would be those disrespectful people who would be guilty of writing that statement as follows because those extra
characters are not only more to type, but they actually get in the way of targetting join mistakes and where is the
indentation. INDENTATION is the most important thing:

SELECT fl.foot AS fl_foot, fr.foot AS fr_foot, mouth.mouth
 FROM foot AS fl INNER JOIN foot AS fr ON fl.person = fr.person
 INNER JOIN mouth ON (mouth.person = fr.person)
 WHERE mouth.location = fl.location AND fl.foot_position = 'L' AND fr.foot_position = 'R'

Indenting, uppercasing SQL keywords, and using AS are the most important conventions we try to hold to.

Of course this is no offense to Josh - just a little nit-pick. Kind of reminds me of working on PostGIS, and one day to my
disbelief I discovered the philosophies of 2 people I have great respect for look like this.

Paul

if (lots_of_spaces_and_lots_of_under_scores && !camels){
 yeah();
}

Postgres OnLine Journal January 2009 6 of 28

http://it.toolbox.com/blogs/database-soup/writing-maintainable-queries-part-i-29052

Mark

if(!one) scream();

and of course all I could think -- What barbarians! How could I even share the same planet with these people?

When all is said and done, probably the most important thing when working on a team, is that everyone grudgingly agrees
to follow the same sane standard and the code created done by 20 programmers looks like it was done by the same
person.

Back to Table Of Contents SQL Coding Standards To Each His Own Reader Comments

Postgres OnLine Journal January 2009 7 of 28

Basics

SQL Coding Standards To Each His Own Part II

Both Josh Berkus and Hubert made blog entries about our last excerpt. In general I will start off by saying that we are
more or less in agreement on what is good SQL coding format.

Here are the things I think we can all agree on

● SQL Keywords should be upper cased
● Field names should be prefixed with their tables especially when you have a multi-join statement involved
● Use JOIN syntax instead of stuffing everything in the WHERE though we are highly against just saying JOIN. We

prefer INNER JOIN

The major points of contention I think are

● Should you use aliases over tables and if you use aliases should you keep them short or more descriptive. Josh
thinks table names should be used where possible and when aliases are used they should be longer than a few
characters and Hubert agrees with us that short aliases are fine and in fact desirable. I think we all agree aliases
should be meaningful when used, but our idea of what it means to be meaningful is a little different.

● In use of JOIN syntax -- we prefer using INNER JOIN instead of using just JOIN and in fact find it quite irritating
that PostgreSQL rewrites our INNERs as JOIN. I suspect Hubert and Josh and many other PostgreSQL folk are on
the other side of the fence on this. The reason we feel strongly about this is there are so many kinds of JOINS -
INNER JOIN, RIGHT JOIN, LEFT JOIN, CROSS JOIN, FULL JOIN, and the horrid NATURAL JOIN (that should be shot
and put out of its misery). To just say JOIN to us is just confusing.

● While you can write LEFT OUTER JOIN, the OUTER is kind of pointless because no one goes around writing LEFT
INNER JOINS

● Use well supported standards where possible. This means CURRENT_TIMESTAMP instead of now(). now() is not in
all databases, but most relational databases support CURRENT_TIMESTAMP

So let us start by looking at Josh's last SQL statement and compare to how we would write it. Josh I hope you didn't come
up with this table structure. We personally hate the use of id as a field identifier for every table, but that's another story.
We prefer something like forum_id, post_id etc. and whats the deal with giving a field name of date. Stay away from data
types as field names.

-- Josh
SELECT persons.id, persons.first_name, persons.last_name, forums.category,
 COUNT(DISTINCT posts.id) as num_posts,
 COALESCE(MAX(comments.rating), 0) AS highest_rating,
 COALESCE(MIN(comments.rating), 0) AS lowest_rating
FROM persons JOIN posts ON persons.id = posts.author
 JOIN forums on posts.forum = forums.id
 LEFT OUTER JOIN comments ON posts.id = comments.post
WHERE persons.status > 0
 AND forums.ratings = TRUE
 AND comments.date > (now() - INTERVAL '1 year')
GROUP BY persons.id, persons.first_name, persons.last_name, forums.category
HAVING count(DISTINCT posts.id) > 0
ORDER BY persons.last_name, persons.first_name;

-- Us

-- Leo tends to prefer upper case alias for table lower case or proper case for fields.
-- Leo also likes to see his SELECT fields across one line regardless how many because
-- he has 2 wide screen ubber huge monitors and wants to take full advantage of them
-- I couldn't demonstrate this without messing up the format of the page.

Postgres OnLine Journal January 2009 8 of 28

http://it.toolbox.com/blogs/database-soup/writing-maintainable-queries-part-ii-29120
http://www.depesz.com/index.php/2009/01/04/maintainable-queries-my-point-of-view/

SELECT P.id, P.first_name, P.last_name, F.category, COUNT(DISTINCT PO.id) as num_posts,
 COALESCE(MAX(C.rating), 0) AS highest_rating, COALESCE(MIN(C.rating), 0) AS lowest_rating
FROM persons AS P INNER JOIN posts AS PO ON P.id = PO.author
 INNER JOIN forums As F ON PO.forum = F.id
 LEFT JOIN comments AS C ON PO.id = C.post
WHERE P.status > 0
 AND F.ratings = TRUE
 AND C.date > (CURRENT_TIMESTAMP - INTERVAL '1 year')
GROUP BY P.id, P.first_name, P.last_name, F.category
HAVING COUNT(DISTINCT PO.id) > 0
ORDER BY P.last_name, P.first_name;

-- Regina flip flops and often depends on database
-- she is working with that day or moment
-- whether she upper cases or lower cases or proper cases.
-- It must be noted that Regina also has 2 wide ubber screens to work with
-- because Leo believes every programmer should have at least 36 inches to work with.
-- Once she finally gets adjusted to the enormity of these things,
-- she will use the space to keep 20 applications open at the same time and train her mind
-- for massive parallel concentration and get 20 times more work done
SELECT pe.id, pe.first_name, pe.last_name, f.category, COUNT(DISTINCT po.id) AS num_posts,
 COALESCE(MAX(c.rating), 0) AS highest_rating, COALESCE(MIN(c.rating), 0) AS lowest_rating
FROM persons AS pe INNER JOIN posts AS po ON pe.id = po.author
 INNER JOIN forums AS f ON po.forum = f.id
 LEFT JOIN comments AS c ON po.id = c.post
WHERE pe.status > 0
 AND f.ratings = TRUE
 AND c.date > (CURRENT_TIMESTAMP - INTERVAL '1 year')
GROUP BY pe.id, pe.first_name, pe.last_name, f.category
HAVING COUNT(DISTINCT po.id) > 0
ORDER BY pe.last_name, pe.first_name;

I will start off by saying for the above example -- Josh is lucky because his table names are naturally short and we are
disadvantaged in this example because two tables start with the same letter. Imagine if the table names were much more
descriptive how repetitive and noisy Josh's scene would become.

The reason we prefer short aliases over long is that it allows you to fit more fields on the same line and scan them quickly
and still prefix with the table names. Leo prefers upper case his table because he can quickly spot where a table name
ends and field begins. Generally speaking you usually have 4 tables or fewer in a statement, the FROM clause is not that
far away as a legend, and the tables usually start with different letters, so its not a large mind cramp for us to remember F
is for Forum and C is for Comments.

Unlike other languages, you then need to keep on repeating this variable over and over again which is much more typing
as well as just makes your statement that much longer to digest.

As a last gripe to what Josh said. Just because you have 255 characters at your disposal as opposed to the 8 you once
had, doesn't mean you should feel compelled to use them all. Long live Fortran. It is older than any language I can think of
including COBOL and has stood the test of time and is still undergoing innovation.

Back to Table Of Contents SQL Coding Standards To Each His Own Part II Reader Comments

Postgres OnLine Journal January 2009 9 of 28

http://en.wikipedia.org/wiki/Fortran

PL Programming

Quick Intro to PLPython Intermediate

We have mentioned time and time again, one of the great selling points of PostgreSQL is that it has so many languages to
choose from for writing database stored functions and the code you write in those stored functions is almost exactly the
same as what you would write when writing in that language's environment. The reason for that is that PostgreSQL applies
a thin layer around the environment the language lives in, so your code is really running in that environment. The down-
side of this approach is you must have that environment installed on the server. This is a bit different from the Microsoft
SQL Server model where code you write in VB.NET, C#, IronPython etc. gets translated into Common Runtime Logic (CLR)
so your code is not really running in the environment it would normally breathe in and if you have dependencies you have
to enable them in the SQL Server GAC which is different from the Server's .NET GAC.

In this section we shall introduce PL/Python - which is a PL language handler for Python that allows you to write
PostgreSQL stored functions in Python. First of all I should start off by saying that we are not proficient Python
programmer's so if anyone sees anything wrong with what we say feel free to embarass us.

We are also taking this opportunity to test-drive PostgreSQL 8.4 on both Linux (OpenSUSE) and Windows, using the
EnterpriseDB PostgreSQL 8.4 beta that Dave Page recently announced on his blog. This install is great if you are running
Windows, MacOSX or Linux Desktop, but sadly does not have PostGIS as part of the stack builder option.

For pure Linux Server CentOS/Redhat EL/Fedora no desktop installs or if you just feel more comfortable at the command-
line, PostgreSQL Yum repository generously maintained by Devrim is the one to go for.

We haven't tested this one out, but I presume the steps are pretty much what we outlined in Using PostgreSQL Yum
repository.

Installing PostgreSQL 8.4 beta

Some things to watch out for which may not be entirely obvious if Linux is new to you.

● Before you can run the Linux .bin installs, you must make them executable by either chmod 777 thebinfile or in
explorer GUI right-click and mark as executable. Windows users can skip this step.

● If you are running another PostgreSQL on your box, give this a different port when the wizard asks, say 5434 or
5433.

Alas the taste of the serpent: Installing Python

One thing I find very intriguing about the language Python is that it seems that every hot shot GIS programmer programs
in it and prefers it to any other language. In fact it is almost a tautology, If you don't program in Python, you must not be
a hot shot GIS programmer, though you could be a hot shot Spatial Database Programmer. I haven't used Python enough
to figure out what these people see in this language, but there must be a reason for its strong following particularly in the
GIS industry. Even ESRI applications install Python which seems kind of odd to me if you look at the strong .NET/Servlet
infrastructure underneath the ESRI architecture. Their programmers must have been throwing severe temper tantrums for
ESRI to allow this to happen.

Can I use PL/Python under PostgreSQL Windows?

Yes. Though in general Python is not preinstalled so you must install it.

● Install Python 2.5 by getting from http://www.python.org/download/releases/ or using Linux distro. It must be
Python 2.5 since that is what the PostgreSQL 8.4 beta builds are compiled against. As of this writing Python 2.5.4 is
the latest of the 2.5 series.

Postgres OnLine Journal January 2009 10 of 28

http://www.enterprisedb.com/products/pgdevdownload.do
http://yum.pgsqlrpms.org/news-8.4devel-ready-for-testing.php
http://www.postgresonline.com/journal/index.php?/archives/86-Yum-addendum-for-8.3.5-and-PgAgent.html
http://www.postgresonline.com/journal/index.php?/archives/86-Yum-addendum-for-8.3.5-and-PgAgent.html
http://www.esri.com/
http://www.python.org/download/releases/

Can I use PL/Pyton under PostgreSQL Unix

Of Course. What PostgreSQL thing can you not use under Unix? Mac OSX. In fact a lot of Linux installs have Python
already loaded so your life is surprisingly easy here.

Installing PL/Python: Our gateway to the serpent

To install PLPython simply run the following on your favorite database. By either using the PgAdmin III or with psql

CREATE PROCEDURAL LANGUAGE 'plpythonu' HANDLER plpython_call_handler;

However if you get a message when installing it that it couldn't be loaded most likely you do not have Python 2.5 installed
or it can not be found.

Our first PLPython stored function

PLPython is an untrusted language which means you can do dangerous things with it if you want and you should be more
careful about what accounts you allow to write these functions.

Simple finding if a file exists

CREATE OR REPLACE FUNCTION fnfileexists(IN afilename text) RETURNS boolean AS
$$
 import os
 return os.path.exists(afilename)
$$
LANGUAGE 'plpythonu' VOLATILE;

--testing the function --
SELECT fnfileexists(E'C:\\test.htm')

fnfileexists

t

PLPython and default parameters

Now we shall test drive PL/Python with a new feature introduced in 8.4 called default parameters. As a side note, in an
unrelated article entitled Chocolate and Peanut Butter Cross-Breeding with PostgreSQL, SQL Server 2008, and Oracle on
our BostonGIS site, we griped a little bit about how PostgreSQL has no default parameters like Oracle does and alas in 8.4
it has it and better yet you can even use it in Python.

CREATE OR REPLACE FUNCTION fndumencoder(randstring text,
 mapfrom text DEFAULT 'abcdedfhijklmnopqrstuvwxyz',
 mapto text DEFAULT 'bcdefghijklmnopqrstuvwxyza')
RETURNS text AS
$$
 import string
 mapt = string.maketrans(mapfrom, mapto)
 return randstring.lower().translate(mapt)
$$
 LANGUAGE 'plpythonu' VOLATILE;

CREATE OR REPLACE FUNCTION fndumdecoder(randstring text,
 mapfrom text DEFAULT 'abcdedfhijklmnopqrstuvwxyz',
 mapto text DEFAULT 'bcdefghijklmnopqrstuvwxyza')
RETURNS text AS

Postgres OnLine Journal January 2009 11 of 28

http://www.bostongis.com/blog/index.php?/archives/146-Chocolate-and-Peanut-Butter-Cross-Breeding-with-PostgreSQL,-SQL-Server-2008,-and-Oracle.html

$$
 import string
 mapt = string.maketrans(mapto, mapfrom)
 return randstring.lower().translate(mapt)
$$
 LANGUAGE 'plpythonu' VOLATILE;

--Testing the functions using default values
SELECT fndumencoder('Johnny thinks too much');
fndumencoder

kpiooz uijolt upp nvdi

SELECT fndumdecoder('kpiooz uijolt upp nvdi');
fndumdecoder

johnny thinks too much

--Testing using our own trivial mapping
SELECT fndumencoder('Johnny thinks too much', 'abcdefghijk', '11234567890');

fndumencode

9o7nny t78n0s too mu27

SELECT fndumdecoder('9o7nny t78n0s too mu27', 'abcdefghijk', '11234567890');
fndumdecoder

johnny thinks too much

Back to Table Of Contents

Postgres OnLine Journal January 2009 12 of 28

Application Development

Fusion Charts and PostgreSQL Part 2: ASP.NET Dashboard Intermediate

In the first part of this series Fusion Charts and PostgreSQL Part 1: Database Analysis of USDA DB in our November/
December 2008 issue, we did some back-seat analysis of a database we had never seen before and formulated some
thoughts of things that would be useful to see in a dashboard as well as starting to develop some views to support our
Dashboard.

In this part, we start the fun off by building an ASP.NET app in both VB and C#. In the next part of this series, we shall
perform the same feat with PHP.

We are going to create a simple dashboard that has the following features:

1. A drop downlist to allow the user to pick the kind of chart to display the data in (Bar, column, funnel etc)
2. A drop downlist that allows the user to pick the metric to explore -- e.g. Cholestrol, Vitamin K, Caffeine etc.
3. 2 charts -- one chart showing the top 5 food groups for our metric and another showing the top 5 foods for our metric

Our final product will look like this:

You can see the app in action - USDA Food Stats and discover some interesting things about the food you eat or were
considering eating.

Our tools and Structure

What we will need for this exercise will be the following:

Postgres OnLine Journal January 2009 13 of 28

http://www.postgresonline.com/journal/index.php?/archives/88-Fusion-Charts-and-PostgreSQL-Part-1-Database-Analysis-USDA-DB.html
http://www.postgresonline.com/demos/FCharts/ViewChartsCS.aspx

1. PostgreSQL USDA database setup from Part 1 (8.1+)
2. FusionCharts Free version will do which you can download from - Fusion Charts Free
3. ASP.NET 2.0 with Framework 3+ or Mono.NET equivalent
4. Npgsql.net 2.0.2 libraries for connectivity to PostgreSQL db, which you can download from http://pgfoundry.org/frs/?

group_id=1000140&release_id=1273

For this exercise we shall also be using a homegrown Db wrapper to wrap the npgsql classes. This just makes it a little easier
to swap one driver/database platform for another

The VB App
VB code behind - ViewChartsVB.aspx.vb

Imports InfoSoftGlobal
Partial Class ViewChartsVB
 Inherits System.Web.UI.Page
 Public DbPg As PC.Data.DbAccessor = PC.Data.DbAccessor.GetDbAccessor(System.Configuration.
ConfigurationManager.ConnectionStrings("DSN").ConnectionString, _
 "PC.Data.PGSQLDbAccessor")

 Public Function CreateChart(ByVal aChartName As String, ByVal aViewName As String) As String
 'strXML will be used to store the entire XML document generated
 Dim strXML, sql As String
 Dim outputTag As String = "</chart>"
 Dim topn As String = "8"

 'Generate the graph element
 strXML = ""
 Select Case Me.DropDownListChartType.SelectedValue
 Case "FCF_Funnel"
 strXML = "<chart isSliced='1' slicingDistance='4' decimalPrecision='2' subcaption='Top " & topn & " By "
& _
 Me.DropDownListAttribute.SelectedItem.Text & "'>"
 outputTag = "</chart>"

 Case "FCF_Column3D", "FCF_Doughnut2D", "FCF_Pie3D", "FCF_Bar2D"
 strXML = "<graph showNames='1' decimalPrecision='2' formatNumberScale='0' rotateNames='1'
caption='Top " & topn & _
 " Per Serving for " & Me.DropDownListAttribute.SelectedItem.Text & "' xAxisName='" & _
 Me.DropDownListAttribute.SelectedItem.Text & "' yAxisName='Avg' >"
 outputTag = "</graph>"
 End Select

 sql = "SELECT Substr(item_name,1,30) As item_name, avgnutritionalvalue As tot, units " & _
 " FROM " & DbPg.sb(aViewName) & _
 " WHERE metric = COALESCE(" & DbPg.StringToSQLNull(Me.DropDownListAttribute.SelectedValue, PC.Data.
DataTypes.DbVarChar) & ", 'Unknown') " & _
 " ORDER BY avgnutritionalvalue DESC " & _
 " LIMIT " & topn

 Using dr As System.Data.IDataReader = DbPg.GetDR(sql)
 While dr.Read()
 strXML = strXML & "<set name='" & Server.HtmlEncode(dr("item_name").ToString().Replace("&", " "))
& "' value='" & dr("tot").ToString() & "' />"
 End While
 End Using

 strXML = strXML & outputTag

 'Create the chart - Pie 3D Chart with data from strXML
Postgres OnLine Journal January 2009 14 of 28

http://www.fusioncharts.com/free/
http://pgfoundry.org/frs/?group_id=1000140&release_id=1273
http://pgfoundry.org/frs/?group_id=1000140&release_id=1273

 Return FusionCharts.RenderChart("FusionCharts/" & Me.DropDownListChartType.SelectedValue & ".swf", "",
strXML, aChartName, "650", "300", False, False)
 End Function

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Me.DropDownListAttribute.DataSource = _
 DbPg.GetDataSet("SELECT metric, metric || ' (' || units || ')' As display FROM vwfdgrpstats GROUP BY
metric, units ORDER BY metric")
 Me.DropDownListAttribute.DataBind()
 End If
 If Me.DropDownListAttribute.SelectedValue > "" Then
 Me.litChartFoodGroup.Text = Me.CreateChart("chartFoodGroup", "vwfdgrpstats")
 Me.litChartFood.Text = Me.CreateChart("chartFood", "vwfoodstats")
 End If
 End Sub
End Class

ASPX display interface ViewChartsVB.aspx

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ViewChartsVB.aspx.vb" Inherits="ViewChartsVB" %
>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Charts</title>
 <SCRIPT LANGUAGE="Javascript" SRC="FusionCharts/FusionCharts.js"></SCRIPT>
 <style type="text/css">
 <!--
 body {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 }
 .text{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 }
 -->
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Chart Type
 <asp:DropDownList ID="DropDownListChartType" runat="server" AutoPostBack="True">
 <asp:ListItem Text="Bar" Value="FCF_Bar2D" />
 <asp:ListItem Text="Funnel" Value="FCF_Funnel" />
 <asp:ListItem Text="Pie 3D" Value="FCF_Pie3D" />
 <asp:ListItem Text="Column 3D" Value="FCF_Column3D" />
 <asp:ListItem Text="Doughnut" Value="FCF_Doughnut2D" />
 </asp:DropDownList>
 Select Metric to Chart By
 <asp:DropDownList ID="DropDownListAttribute" DataTextField="display" DataValueField="metric"
runat="server" AutoPostBack="True" />
 <asp:Literal ID="litChartFoodGroup" runat="server" />

Postgres OnLine Journal January 2009 15 of 28

 <asp:Literal ID="litChartFood" runat="server" />
 </div>
 </form>
</body>
</html>

The C# App
CS code behind - ViewChartsCS.aspx.cs

using InfoSoftGlobal;
partial class ViewChartsCS : System.Web.UI.Page {
 public PC.Data.DbAccessor DbPg = PC.Data.DbAccessor.GetDbAccessor(System.Configuration.
ConfigurationManager.ConnectionStrings["DSN"].ConnectionString,
 "PC.Data.PGSQLDbAccessor");

public string CreateChart(string aChartName, string aViewName)
{
 //strXML will be used to store the entire XML document generated
 string strXML = null;
 string sql = null;
 string outputTag = "</chart>";
 string topn = "8";

 //Generate the graph element
 strXML = "";
 switch (this.DropDownListChartType.SelectedValue) {
 case "FCF_Funnel":
 strXML = "<chart isSliced='1' slicingDistance='4' decimalPrecision='2' subcaption='Top " + topn + " By "
 + this.DropDownListAttribute.SelectedItem.Text + "'>";
 outputTag = "</chart>";
 break;
 case "FCF_Column3D":
 case "FCF_Doughnut2D":
 case "FCF_Pie3D":
 case "FCF_Bar2D":
 strXML = "<graph showNames='1' decimalPrecision='2' formatNumberScale='0' rotateNames='1'
caption='Top " + topn + " Per Serving for " +
 this.DropDownListAttribute.SelectedItem.Text + "' xAxisName='" + this.DropDownListAttribute.
SelectedItem.Text + "' yAxisName='Avg' >";
 outputTag = "</graph>";
 break;
 }

 sql = "SELECT Substr(item_name,1,30) As item_name, avgnutritionalvalue As tot, units " + " FROM " + DbPg.sb
(aViewName) + " WHERE metric = COALESCE(" +
 DbPg.StringToSQLNull(this.DropDownListAttribute.SelectedValue, PC.Data.DataTypes.DbVarChar) + ",
'Unknown') " +
 " ORDER BY avgnutritionalvalue DESC LIMIT " + topn;

 using (System.Data.IDataReader dr = DbPg.GetDR(sql)) {
 while (dr.Read()) {
 strXML = strXML + "<set name='" + Server.HtmlEncode(dr["item_name"].ToString().Replace("&", " ")) +
"' value='" + dr["tot"].ToString() + "' />";
 }
 }

 strXML = strXML + outputTag;

 //Create the chart - Pie 3D Chart with data from strXML

Postgres OnLine Journal January 2009 16 of 28

 return FusionCharts.RenderChart("FusionCharts/" + this.DropDownListChartType.SelectedValue + ".swf", "",
strXML, aChartName, "650", "300", false, false);
}

 protected void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack) {
 this.DropDownListAttribute.DataSource = DbPg.GetDataSet("SELECT metric, metric || ' (' || units || ')' As
display " +
 " FROM vwfdgrpstats GROUP BY metric, units ORDER BY metric");
 this.DropDownListAttribute.DataBind();
 }
 if (! (this.DropDownListAttribute.SelectedValue == "")) {
 this.litChartFoodGroup.Text = this.CreateChart("chartFoodGroup", "vwfdgrpstats");
 this.litChartFood.Text = this.CreateChart("chartFood", "vwfoodstats");
 }
 }
}

CS ASPX - ViewChartsCS.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="ViewChartsCS.aspx.cs" Inherits="ViewChartsCS" %
>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Charts</title>
 <SCRIPT LANGUAGE="Javascript" SRC="FusionCharts/FusionCharts.js"></SCRIPT>
 <style type="text/css">
 <!--
 body {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 }
 .text{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 }
 -->
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Chart Type
 <asp:DropDownList ID="DropDownListChartType" runat="server" AutoPostBack="True">
 <asp:ListItem Text="Bar" Value="FCF_Bar2D" />
 <asp:ListItem Text="Funnel" Value="FCF_Funnel" />
 <asp:ListItem Text="Pie 3D" Value="FCF_Pie3D" />
 <asp:ListItem Text="Column 3D" Value="FCF_Column3D" />
 <asp:ListItem Text="Doughnut" Value="FCF_Doughnut2D" />
 </asp:DropDownList>
 Select Metric to Chart By
 <asp:DropDownList ID="DropDownListAttribute" DataTextField="display" DataValueField="metric"
runat="server" AutoPostBack="True" />
 <asp:Literal ID="litChartFoodGroup" runat="server" />

Postgres OnLine Journal January 2009 17 of 28

 <asp:Literal ID="litChartFood" runat="server" />
 </div>
 </form>
</body>
</html>

Back to Table Of Contents Fusion Charts and PostgreSQL Part 2: ASP.NET Dashboard Reader Comments

Postgres OnLine Journal January 2009 18 of 28

Application Development

Fusion Charts and PostgreSQL Part 3: PHP Dashboard Intermediate

In the first part of this series Fusion Charts and PostgreSQL Part 1: Database Analysis of USDA DB in our November/
December 2008 issue, we did some back-seat analysis of a database we had never seen before and formulated some
thoughts of things that would be useful to see in a dashboard as well as starting to develop some views to support our
Dashboard. In the second part of our Fusion Charts series, we covered creating a Dashboard application in ASP.NET that
demonstrated both VB.NET and C# variants using the database we loaded and prepped in Part 1.

In this part three of our series, we shall conclude by demonstrating the same application we did in ASP.NET in PHP.

We are going to create a simple dashboard that has the following features:

1. A drop-down list to allow the user to pick the kind of chart to display the data in (Bar, column, funnel etc)
2. A drop-down list that allows the user to pick the metric to explore -- e.g. Cholestrol, Vitamin K, Caffeine etc.
3. 2 charts -- one chart showing the top 5 food groups for our metric and another showing the top 5 foods for our

metric

Our final product will look like this:

You can see the app in action - USDA Food Stats and discover some interesting things about the food you eat or were
considering eating.

Tools and Structure

Postgres OnLine Journal January 2009 19 of 28

http://www.postgresonline.com/journal/index.php?/archives/88-Fusion-Charts-and-PostgreSQL-Part-1-Database-Analysis-of-USDA-DB.html
http://www.postgresonline.com/journal/index.php?/archives/92-Fusion-Charts-and-PostgreSQL-Part-2-ASP.NET-Dashboard.html
http://www.postgresonline.com/journal/index.php?/archives/92-Fusion-Charts-and-PostgreSQL-Part-2-ASP.NET-Dashboard.html
http://www.postgresonline.com/demos/FCharts/view_charts.php

What we will need for this exercise will be the following:

1. PostgreSQL USDA database setup from Part 1 (8.1+)
2. FusionCharts Free version will do which you can download from - Fusion Charts Free
3. PHP 5+
4. PHP Smarty Templating Engine which you can get from www.smarty.net -

Long aside: Paragon forcing their twisted philosophies on poor unsuspecting readers. You can ignore
this if you want, unless you wish to be enlightened :).
We have to add, that those who develop PHP without a templating engine should try one. For very simple
applications, it might be overkill, but as your applications become more complex, it becomes extremely useful. You
just can't imagine the value of a templating engine until you use one. The main benefits to us have been:

1. It allows you to easily cater to different devices and produce numerous output layouts without making your
basic logic difficult to understand. Think for example if you have a report aht rquires you ca output in
wordml, open office xmla nd html format that needs to confirm to an extremely defined design spec. It is just
so much easier to do it with a template than try to generate different variants with standard PHP syntax.

2. When those designers give you their vision of what a page is supposed to look like, its easier to integrate
their vision into the overall architecture without screwing up your vision of how the logic should flow.

3. Display concerns lend themselves to a different style of programming than what you would expect directly
from a business flow tier. It keeps your sanity if these two styles aren't swashed together.

5. PHP ADODB Database Abastration Layer (Note: Pear DB and others are equally good. The main benefit of a DB
Abstraction layer is you don't need to remember the different function calls each db platform uses and can
concentrate on just writing SQL. It also makes it a little easier to swap one db out for another.) which you can
download from http://adodb.sourceforge.net/ and PHP pgsql driver enabled in php.ini

The PHP App

Begin by creating folders in your web app directories called

1. templates - this will be where our .tpl file resides.
2. templates_c - this needs to be writeable by your web server process and is where Smarty compiles the templates

into php files
3. libs - extract adodb and smarty into this directory and put the FusionCharts/FusionCharts.php such that you have 3

folders -- adodb, smarty, FusionCharts
4. Create another folder called FusionCharts on root of webfolder and put the FusionCharts flash and .js files there.

The Config file

<?php
define("DSN", 'postgres://usda_app:foodie@localhost:5432/usda?persist');
?>

Controller Logic - view_charts.php

<?php
require_once('config.inc.php');
require_once('libs/smarty/Smarty.class.php');
require_once('libs/adodb/adodb.inc.php');
require_once('libs/FusionCharts/FusionCharts.php');
class _view_charts extends Smarty{

 protected $db;
 protected $charttypes = array('FCF_Bar2D' => 'Bar', 'FCF_Funnel'=>'Funnel',
 'FCF_Pie3D' => 'Pie 3D', 'FCF_Column3D' => 'Column 3D',
 'FCF_Doughnut2D' => 'Doughnut');
 protected $rs_attributes;
 function __construct() {
 $this->db = NewADOConnection(DSN);
 if (!$this->db) {
 die("Connection failed");

Postgres OnLine Journal January 2009 20 of 28

http://www.fusioncharts.com/free/
http://www.smarty.net/
http://adodb.sourceforge.net/

 }
 $this->rs_attributes = $this->db->Execute("SELECT metric, metric || ' (' || units || ')' As display
 FROM vwfdgrpstats GROUP BY metric, units ORDER BY metric")->GetAssoc();
 $this->page_load();
 }

 function page_load(){
 $this->assign('rs_attributes', $this->rs_attributes);
 $this->assign('rs_charttypes', $this->charttypes);

 $this->assign('lit_chart_food_group', $this->create_chart("chartFoodGroup", "vwfdgrpstats"));
 $this->assign('lit_chart_food', $this->create_chart("chartFood", "vwfoodstats"));

 $this->display('view_charts.tpl');
 }

 function create_chart($achart_name, $aview_name){
 //str_xmlwill be used to store the entire XML document generated
 $str_xml = null;
 $sql = null;
 $output_tag = '';
 $topn = '8';
 $charttype = key($this->charttypes);

 //default attribute to first element in list
 $att_display = reset($this->rs_attributes);
 $att_value = key($this->rs_attributes);

 if (!empty($this->rs_attributes[$_REQUEST['dropdownlist_attribute']])){
 $att_display = $this->rs_attributes[$_REQUEST['dropdownlist_attribute']];
 $att_value = $_REQUEST['dropdownlist_attribute'];
 }

 if (!empty($_REQUEST['dropdownlist_charttype'])){
 $charttype = $_REQUEST['dropdownlist_charttype'];
 }

 //Generate the graph element
 $str_xml = "";
 switch ($charttype) {
 case "FCF_Funnel":
 $str_xml = "<chart isSliced='1' slicingDistance='4' decimalPrecision='2' subcaption='Top $topn By "
 . $att_display . "'>";
 $output_tag = "</chart>";
 break;
 case "FCF_Column3D":
 case "FCF_Doughnut2D":
 case "FCF_Pie3D":
 case "FCF_Bar2D":
 $str_xml = "<graph showNames='1' decimalPrecision='2' formatNumberScale='0' rotateNames='1'
caption='Top " . $topn . " Per Serving for " .
 $att_display .
 "' xAxisName='" . $att_display . "' yAxisName='Avg' >";
 $output_tag = "</graph>";
 break;
 }

 $sql = "SELECT Substr(item_name,1,30) As item_name, avgnutritionalvalue As tot, units
 FROM " . $aview_name . " WHERE metric = COALESCE(" .
 $this->db->qstr($att_value) . ", 'Unknown') " .

Postgres OnLine Journal January 2009 21 of 28

 " ORDER BY avgnutritionalvalue DESC";

 $dr = $this->db->SelectLimit($sql, $topn);

 while (!$dr->EOF) {
 $str_xml = $str_xml . "<set name='" . preg_replace('/[^A-Za-z0-9\s\s+]/',' ',$dr->fields
("item_name")) . "' value='" . $dr->fields("tot") . "' />";
 $dr->MoveNext();
 }
 $dr->Close();
 $dr = null;

 $str_xml = $str_xml . $output_tag;

 //Create the chart with data from strXML
 return renderChart("FusionCharts/" . $charttype . ".swf", "", $str_xml, $achart_name, "650", "300", false,
false);
 }
}
new _view_charts();
?>

Display interface templates/view_charts.tpl

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Charts</title>
 <SCRIPT LANGUAGE="Javascript" SRC="FusionCharts/FusionCharts.js"></SCRIPT>
 <style type="text/css">
 {literal}
 <!--
 body {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 }
 -->
 {/literal}
 </style>
 <SCRIPT LANGUAGE="Javascript" SRC="FusionCharts/FusionCharts.js"></SCRIPT>
</head>
<body>
 <form id="form1" action="{$smarty.request.url}" method="post">
 <div>
 Chart Type
 <select id="dropdownlist_charttype" name="dropdownlist_charttype" onchange="this.form.submit()">
 {html_options options=$rs_charttypes selected=$smarty.request.dropdownlist_charttype}
 </select>
 Select Metric to Chart By
 <select id="dropdownlist_attribute" name="dropdownlist_attribute" onchange="this.form.submit()">
 {html_options options=$rs_attributes selected=$smarty.request.dropdownlist_attribute}
 </select>
 {$lit_chart_food_group}
 {$lit_chart_food}
 </div>
 </form>
</body>
</html>

Postgres OnLine Journal January 2009 22 of 28

Back to Table Of Contents Fusion Charts and PostgreSQL Part 3: PHP Dashboard Reader Comments

Postgres OnLine Journal January 2009 23 of 28

Product Showcase

On the topic of Cheat Sheets: DZone RefCardz

This is a product that has nothing to do with PostgreSQL yet, so it does seem kind of odd that we are listing this in our
product showcase section.

Well it is not even really a product per se, but I was just so enamored by the beauty of the layout and the usefulness of
these cheat sheets, that I felt it was worthy of being listed in our showcase section since some of these would be useful to
the PostgreSQL community of programmers.

What is this product you ask? It is DZone RefCardz. When I discovered this array of cheat sheets, I became a glutton and
downloaded about 10 of them. It made me even want to start learning Ruby and also made me realize how little I know
about CSS.

I was disappointed to find out that while they have an Essential MySQL, which by the way is extremely useful, they don't
also have an Essential PostgreSQL yet. Someone should really write one of these things for PostgreSQL, but I guess it
would be best for that someone to be a published author since it seems the main focus of RefCardz is as a publicity card
for an author's book.

As a side note, it did get me thinking about the format of Postgres OnLine Journal cheat sheets and as many people have
mentioned, perhaps we do try to cram too much information on one page. The layout of RefCardz cheat sheets seems to
provide a good balance between amount of content and brevity and made me realize that having a multi-page cheat sheet
is not such a bad thing. Their choice of colors, layout and diagrams is just mesmerizing.

Back to Table Of Contents On the topic of Cheat Sheets: DZone RefCardz Reader Comments

Postgres OnLine Journal January 2009 24 of 28

http://refcardz.dzone.com/

Special Feature

PostgreSQL 8.3 PSQL Cheatsheet Overview

PSQL is the command line administration/query tool for PostgreSQL. It is simple, light-weight and packed with a lot of
charm. Unfortunately we can't quite capture all its charm in a single pager cheat sheet, but hopefully this will give you a
sense of its usefulness.

Below is a Thumbnail view of the PSQL cheat sheet. This is by no means comprehensive, but are the features we use most
often. It is also pretty much what you get from the help screen with just some added color.

PDF Portrait version 8.5 x 11" of this cheatsheet is available at PSQL8.3 Cheatsheet 8.5 x 11 and also available in PDF A4
format and HTML.

Hubert has some neat tips for making more effective use of psql

● keyboard shortcuts in psql
● Suppressing CONTEXT lines in psql

Back to Table Of Contents

Postgres OnLine Journal January 2009 25 of 28

http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet&outputformat=pdf
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet&outputformat=pdf
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet&outputformat=a4pdf
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet&outputformat=a4pdf
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_psql_cheatsheet&outputformat=html
http://www.depesz.com/index.php/2008/03/30/keyboard-shortcuts-in-psql/
http://www.depesz.com/index.php/2008/07/12/suppressing-context-lines-in-psql/

Reader Comments

 SQL Coding Standards To Each His Own
Carl T.
In the MS SQL world, most of the examples I've seen use lower case letters as aliases. Unfortunately for me, I've gotten in
the habit of copying this convention:

"FROM sometable a
INNER JOIN someothertable b"

What was even weirder was the convention of some Teradata people I worked with from the data warehouse group that
used numbers.

Josh B. was right about one thing - there don't appear to be any set conventions established.

Ants Aasma
Possibly you meant the Far Side cartoon brought out by Steve Yegge in
http://steve-yegge.blogspot.com/2006/10/egomania-itself.html

Regina
That wasn't the one I was thinking of, but that is pretty funny.

Pythian Group Blog
Welcome, readers, to the 129th edition of Log Buffer, the weekly review of database blogs. Welcome also to 2009, so fresh
it still has that wonderful new year smell. Let’s take ‘er out on the road and see what she can do.
Starting with Or...

fsilber
Who cares whether everyone on the project makes the same choice between underscores versus camel style?

What is important is that the name describes the content of the variable well enough that the reader need not read huge
tracts of code to figure it out.

Regina
I have to agree with you that variable naming is pretty important, but I also think consistency in basic style is important
too.

Have you ever worked on a code-base where half the people indent one way and other half indent another? For me it
doesn't matter one way or another but seeing 2 different styles confuses new people coming into the project (should I do
it this way or that way?) and just reading the code requires a sort of non-sensical context switching (at least for me
anyway).

I guess its kind of hard to explain and maybe I'm just more sensitive to those kinds of things.

Baloo
The styling of the comments hurts my eyes.

 SQL Coding Standards To Each His Own Part II
alan
In regards to the table.id argument, why not consider semantics? table.id is semantic. table.table_id is just plain
redundant and insulting to coding intelligence.

Why do the extra work for no explicit benefit? Note how you guys state, "Field names should be prefixed with their tables."
You might as well go on to say, "... and id columns should also be prefixed with their tables." Read that back to yourselves
and let your mind wobble. Thanks for helping to push non beneficial "standards" to make my day-to-day tasks more of a
pain in the ass.

Regina
Alan,

First of all these are just opinions and part of the point of this article is that standards are not quite as cut and dry as some
people think. Josh I'm sure feels strongly about his style just as much as we feel strongly about our style.

The 2 problems I see with id is

Postgres OnLine Journal January 2009 26 of 28

1) You always have to alias it in the SELECT because who wants to see id in a multi join output when you can't see the
tables that are being joined.

In many cases we need to output the primary key for example if the query is a view to be joined later with other things
and if you are going to have to alias to a meaningful name, you might as well do it in the table.

2) Its just distracting to see all fields named the same unless they mean the same thing (yah we can argue an id is an id,
but an id is not always an integer so why should it always have the same name and that's a whole other argument as to
whether we should always use surrogate keys). first_name is a first_name and always means the same thing okay I get it.

When you are using short aliasing of tables its especially annoying.

PO.id is just not quite as useful to see as PO.post_id. In Josh' model its not quite as bad since he always spells out the
table name. So I guess in Josh's model it works if you never need to output the primary key in the query.

RDL
Hi. Just a small nitpick.

Not once did you mention the word "column", but used the word "field" 8 times.

Columns are not fields.

Here is a great explanation:

http://www.developersdex.com/gurus/articles/118.asp

Regards.

Regina
RDL,

I'll have to think about this a bit more. You are probably right. Rereading Celko's paper I could read it a couple of ways.

The way I have always understood it, a column defines the whole set of data of a specific slot (column) in a table. A field
defines a specific element of data that lives in a specific row in a specific column.

So when I think of writing SQL statements -- I think of them as fields, because I am not selecting the whole column 0
table (I am only selecting a set of fields that live in a column). But yes I am selecting from columns so perhaps I should
call it columns.

So when I am defining a table structure I think columns. When I am selecting data, I think fields.

The other reason I just assume not bother talking about columns is we do a lot of financial consulting and when you start
talking columns - the first crazy thought that pops into finance peoples minds is (Ah so a database is a spreadsheet - we
have columns too). I just assume not get into that mindset of thinking of databases as spreadsheets even though they
both have columns and I have partaken in the guilty pleasure of simulating spreadsheet behavior in databases :)

 Fusion Charts and PostgreSQL Part 2: ASP.NET Dashboard
Anton
Hi - please take a look at AnyChart - this flash chart solution will also work for your case.
http://www.anychart.com

Postgres OnLine Journal
In the first part of this series Fusion Charts and PostgreSQL Part 1: Database Analysis of USDA DB in our November/
December 2008 issue, we did
some back-seat analysis of a database we had never seen before and formulated some thoughts of things that woul

 Fusion Charts and PostgreSQL Part 3: PHP Dashboard
santiago-ve
Interesting article!

may be there will be a 4th part with python example?

 On the topic of Cheat Sheets: DZone RefCardz

Postgres OnLine Journal January 2009 27 of 28

Josh Berkus
Regina, Leo,

I'm trying to get in touch with you about pgcon. Please e-mail me. Thanks!

Postgres OnLine Journal January 2009 28 of 28

POSTGRESQL 8.3 PSQL CHEAT SHEET

psql is located in the bin folder of the PostgreSQL install and PgAdmin III install.
This is psql 8.3.5, the PostgreSQL interactive terminal.

Usage: psql [OPTIONS]... [DBNAME [USERNAME]]

General options:

 -c COMMAND
 -d, --dbname=NAME
 -f, --file=FILENAME
 --help
 -l, --list
 -v NAME=VALUE
 --version
 -X

 run only single command (SQL or internal) and exit
 specify database name to connect to (default: "logged in username here")
 execute commands from file, then exit
 show this help, then exit
 list available databases, then exit
 set psql variable NAME to VALUE
 output version information, then exit
 do not read startup file (~/.psqlrc)

Interactive Console:

TYPE: \copyright
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit
GENERAL:
 \c[onnect] [DBNAME|- USER|- HOST|- PORT|-]
 \cd [DIR]
 \encoding [ENCODING]
 \h [NAME]
 \set [NAME [VALUE]]
 \timing
 \unset NAME
 \prompt [TEXT] NAME
 \! [COMMAND]

QUERY BUFFER:
 \e [FILE]
 \g [FILE]
 \p
 \r
 \w FILE

INPUT/OUTPUT:
 \echo [STRING]
 \i FILE
 \o [FILE]
 \qecho [STRING]

INFORMATIONAL:
 \d [NAME]
 \d{t|i|s|v|S} [PATTERN] (add "+" for more detail)
 \da [PATTERN]
 \db [PATTERN]
 \dc [PATTERN]
 \dC
 \dd [PATTERN]
 \dD [PATTERN]
 \df [PATTERN]
 \dF [PATTERN]
 \dFd [PATTERN]
 \dFt [PATTERN]
 \dFp [PATTERN]
 \dg [PATTERN]
 \dn [PATTERN]
 \do [NAME]
 \dl
 \dp [PATTERN]
 \dT [PATTERN]
 \du [PATTERN]
 \l
 \z [PATTERN]

FORMATTING
 \a
 \C [STRING]
 \f [STRING]
 \H
 \pset NAME [VALUE]

 \t
 \T [STRING]
 \x

COPY, LARGE OBJECT
 \copy ...
 \lo_export LOBOID FILE
 \lo_import FILE [COMMENT]
 \lo_list
 \lo_unlink LOBOID

for distribution terms
for help with SQL commands
for help with psql commands
or terminate with semicolon to execute query
to quit

connect to new database
change the current working directory
show or set client encoding
help on syntax of SQL commands, * for all commands
set internal variable, or list all if no parameters
toggle timing of commands (currently off)
unset (delete) internal variable
prompt user to set internal variable
execute command in shell or start interactive shell

edit the query buffer (or file) with external editor
send query buffer to server (and results to file or |pipe)
show the contents of the query buffer
reset (clear) the query buffer
write query buffer to file

write string to standard output
execute commands from file
send all query results to file or |pipe
write string to query output stream (see \o)

describe table, index, sequence, or view
list tables/indexes/sequences/views/system tables
list aggregate functions
list tablespaces (add "+" for more detail)
list conversions
list casts
show comment for object
list domains
list functions (add "+" for more detail)
list text search configurations (add "+" for more detail)
list text search dictionaries (add "+" for more detail)
list text search templates
list text search parsers (add "+" for more detail)
list groups
list schemas (add "+" for more detail)
list operators
list large objects, same as \lo_list
list table, view, and sequence access privileges
list data types (add "+" for more detail)
list users
list all databases (add "+" for more detail)
list table, view, and sequence access privileges (same as \dp)

toggle between unaligned and aligned output mode
set table title, or unset if none
show or set field separator for unaligned query output
toggle HTML output mode (currently off)
set table output option
 (NAME := {format|border|expanded|fieldsep|footer|null|numericlocale|recordsep
 |tuples_only|title|tableattr|pager})
show only rows (currently off)
set HTML <table> tag attributes, or unset if none
toggle expanded output (currently off)

perform SQL COPY with data stream to the client host
LOBOID FILE
FILE [COMMENT]

large object operations

Connection options:

 -h, --host=HOSTNAME database server host or socket directory
 -p, --port=PORT database server port number
 -U, --username=NAME connect as specified database user
 -W, --password force password prompt (should happen automatically)
 -e, --exit-on-error exit on error, default is to continue
 -d DBNAME some database

psql automated shell examples

restore w hole server

psql --host=localhost --username=someuser -f /path/to/pgdumpall.sql

Run an sql batch script against a database

psql -h localhost -U someuser -d somedb -f /path/to/somefile.sql

Run an sql batch script against a database and send output to file

psql -h localhost -U someuser -d somedb -f /path/to/scriptfile.sql -o /path/to/outputfile.txt

Run a single statement against a db

psql -U postgres -d pagila -c "CREATE TABLE test(some_id serial PRIMARY KEY, some_text text);"
Output data in html format

psql -h someserver -p 5432 -U someuser -d somedb -H -c "SELECT * FROM sometable" -o mydata.html

psql Interactive mode

Launch Interactive session

psql -h localhost -U postgres -d somedb
View help for SELECT * LIMIT

\h SELECT * LIMIT
List all tables in db w ith descriptions

\dt+
List all tables in db w ith s in the name

\dt *s*
Cancel out of MORE screen

:q

http://www.postgresonline.com

	POJ January 2009
	How to determine what elements are in yo
	How to require all checked conditions ar
	SQL Coding Standards To Each His Own
	SQL Coding Standards To Each His Own Par
	Quick Intro to PLPython Intermediate
	Fusion Charts and PostgreSQL Part 2: ASP
	Fusion Charts and PostgreSQL Part 3: PHP
	On the topic of Cheat Sheets: DZone RefC
	PostgreSQL 8.3 PSQL Cheatsheet Overview
	Reader Comments

	PostgreSQL 8.3 PSQL Cheat Sheet

